上传文件至 /

This commit is contained in:
wangzhiming 2025-05-12 13:50:21 +08:00
parent d0f7fe4fa9
commit cf784002ea
2 changed files with 207 additions and 49 deletions

160
API.py
View File

@ -6,11 +6,32 @@ from datetime import timedelta
import pymysql
from sqlalchemy import create_engine
from dateutil.relativedelta import relativedelta
import logging
import time
import os
total_start = time.time()
# 在文件开头添加日志配置
def setup_logging():
log_dir = os.path.join(os.path.dirname(__file__), 'logs')
os.makedirs(log_dir, exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(os.path.join(log_dir, 'api.log')),
logging.StreamHandler()
]
)
setup_logging()
logger = logging.getLogger(__name__)
# 在API.py开头添加
import sys
# 替换原来的get_user_date函数
def get_user_date():
if len(sys.argv) > 1:
@ -43,7 +64,7 @@ engine = create_engine(f'mysql+pymysql://{username}:{password}@{host}:{port}/{da
configPath = r'C:\AI trading\config\Rey\test_reinforcement'
matlabPath = r'D:\Dropbox\Matlab\Rey\MATLAB'
# 修改为你的 Excel 文件路径
# 修改为 Excel 文件路径
tempPath = r'C:\Users\24011\Documents\WeChat Files\wxid_k4ep58f81rx421\FileStorage\File\2025-04\tuigua_huangjijingshi - 副本\tuigua_huangjijingshi - 副本\皇极经世.xlsx'
# ========== 加载 64 卦映射表 ==========
@ -58,14 +79,14 @@ Map64GuaOmit = Map64Gua[Map64Gua['change_omit'] == 0]
# ========== 从数据库加载 24 节气数据 ==========
def load_solar_terms(conn_params):
"""通过 SQLAlchemy 连接读取 solar_terms 表"""
sqlquery = 'SELECT * FROM solar_terms'
sqlquery = "SELECT * FROM solar_terms WHERE As_Of_Date > '1744-01-01'"
df = pd.read_sql(sqlquery, engine)
# 尝试将 As_Of_Date 转为 datetime如果失败就变成 NaT
df['As_Of_Date'] = pd.to_datetime(df['As_Of_Date'], errors='coerce')
# 过滤掉早于 1900-01-01 或转换失败的日期
df = df[df['As_Of_Date'] >= pd.Timestamp('1900-01-01')]
df = df[df['As_Of_Date'] >= pd.Timestamp('1780-01-01')]
df = df.dropna(subset=['As_Of_Date'])
# df['As_Of_Date'] = df['As_Of_Date']
df = df.sort_values('As_Of_Date')
@ -102,14 +123,51 @@ def get_user_date():
print("日期格式不正确请使用YYYY-MM-DD格式", file=sys.stderr)
sys.exit(1)
# 加载数据并标记重要节气
load_start = time.time()
solar_terms = load_solar_terms(engine)
logger.info(f"节气加载完成,耗时: {time.time() - load_start:.2f}")
important_terms = ['冬至', '雨水', '谷雨', '夏至', '处暑', '霜降']
solar_terms['isImportant'] = solar_terms['Solar_Terms'].isin(important_terms).astype(int)
Map24Jieqi = solar_terms.copy()
# ========== 读取CSV文件并处理每个日期的卦象 ==========
read_start = time.time()
csv_path = r'C:\Users\24011\Documents\WeChat Files\wxid_k4ep58f81rx421\FileStorage\File\2025-04\tuigua_huangjijingshi - 副本\tuigua_huangjijingshi - 副本\python1\2020 - 2030年每天卦.csv'
table = pd.read_csv(csv_path)
logger.info(f"读取csv文件完成耗时: {time.time() - read_start:.2f}")
try:
piwen_path = r'C:\Users\24011\Documents\WeChat Files\wxid_k4ep58f81rx421\FileStorage\File\2025-04\tuigua_huangjijingshi - 副本\tuigua_huangjijingshi - 副本\python1\批文.xlsx'
piwen_data = pd.read_excel(piwen_path)
# 打印列名用于调试
print("批文文件列名:", piwen_data.columns.tolist(), file=sys.stderr)
# 检查必要的列是否存在
if not all(col in piwen_data.columns for col in ['卦名', '命卦批文', '八个字基本盘']):
print("批文文件缺少必要列请检查Excel文件列名", file=sys.stderr)
piwen_data = pd.DataFrame(columns=['卦名', '命卦批文', '八个字基本盘'])
except Exception as e:
print(f"读取批文文件失败: {str(e)}", file=sys.stderr)
piwen_data = pd.DataFrame(columns=['卦名', '命卦批文', '八个字基本盘'])
def get_piwen_info(trigram_name):
"""根据卦名获取批文和基本盘信息"""
if not isinstance(trigram_name, str):
trigram_name = str(trigram_name)
try:
match = piwen_data[piwen_data['卦名'] == trigram_name]
if not match.empty:
return {
'piwen': match.iloc[0]['命卦批文'],
'basic_info': match.iloc[0]['八个字基本盘']
}
else:
print(f"未找到卦名 {trigram_name} 的批文信息", file=sys.stderr)
return {'piwen': '暂无批文信息', 'basic_info': '暂无基本盘信息'}
except Exception as e:
print(f"获取批文信息出错: {str(e)}", file=sys.stderr)
return {'piwen': '暂无批文信息', 'basic_info': '暂无基本盘信息'}
# 获取用户输入
kDate = get_user_date()
#print("\n计算日期:", kDate.strftime('%Y-%m-%d'))
@ -125,16 +183,23 @@ import json # 导入 JSON 库
if __name__ == "__main__":
print("=== 调试开始 ===", file=sys.stderr) # 打印到 stderr 不会干扰 stdout 的 JSON
kDate = get_user_date()
try:
input_start = time.time()
kDate = get_user_date()
logger.info(f"获取用户输入完成,耗时: {time.time() - input_start:.2f}")
# 计算卦象
calc_start = time.time()
Gua1Hour, Gua1Day, Gua1Month, Gua1Year, GuaLuck = guaCalc_huangjijingshi(
Map64Gua, Map24Jieqi, kDate
)
logger.info(f"卦象计算完成,耗时: {time.time() - calc_start:.2f}")
# # 计算10年前当前日期减10年
# Yearpre10 = kDate.replace(year=kDate.year - 10)
# # 计算10年后当前日期加10年
# Yearpast10 = kDate.replace(year=kDate.year + 10)
# 或者使用relativedelta更精确处理闰年等情况
# 计算年份卦象
year_start = time.time()
Yearpre10 = datetime(2010, 1, 1)
Yearpast10 = datetime(2030, 1, 1,)
@ -154,9 +219,12 @@ if __name__ == "__main__":
})
yearGuaMap = pd.DataFrame(year_gua_list)
logger.info(f"年份卦象计算完成,耗时: {time.time() - year_start:.2f}")
#========== 计算年份吉凶 ==========
# 计算年份吉凶
luck_start = time.time()
LuckYear = luckCalc_huangjijingshi(Map64Gua, yearGuaMap, GuaLuck)
logger.info(f"吉凶计算完成,耗时: {time.time() - luck_start:.2f}")
# # 检查 Gua1Day 的类型并正确处理
# if isinstance(Gua1Day, pd.DataFrame):
# # 如果是 DataFrame提取第一行
@ -171,26 +239,34 @@ if __name__ == "__main__":
# raise ValueError("Gua1Day 的类型不支持,必须是 DataFrame、Series 或 dict")
def format_gua_data(gua_data):
"""通用格式化卦象数据的函数"""
if isinstance(gua_data, (pd.DataFrame, pd.Series)):
data = gua_data.iloc[0] if isinstance(gua_data, pd.DataFrame) else gua_data
return {
'id': int(data.get('id', 0)),
'trigram': str(data.get('trigram', '')),
'yaoAll': str(data.get('yaoAll', '')),
'yao1': int(data.get('yao1', 0)),
'yao2': int(data.get('yao2', 0)),
'yao3': int(data.get('yao3', 0)),
'yao4': int(data.get('yao4', 0)),
'yao5': int(data.get('yao5', 0)),
'yao6': int(data.get('yao6', 0)),
'value_2binary': int(data.get('value_2binary', 0)),
'change_omit': int(data.get('change_omit', 0)),
'type': str(data.get('Type', 'unknown'))
}
if isinstance(gua_data, pd.DataFrame):
# DataFrame类型 - 取第一行转为字典
data = gua_data.iloc[0].to_dict()
elif isinstance(gua_data, pd.Series):
# Series类型 - 直接转为字典
data = gua_data.to_dict()
elif isinstance(gua_data, dict):
return gua_data
# 已经是字典类型
data = gua_data
else:
# 未知类型返回空字典
return {}
# 统一处理字典数据
return {
'id': int(data.get('id', 0)),
'trigram': str(data.get('trigram', '')),
'yaoAll': str(data.get('yaoAll', '')),
'yao1': int(data.get('yao1', 0)),
'yao2': int(data.get('yao2', 0)),
'yao3': int(data.get('yao3', 0)),
'yao4': int(data.get('yao4', 0)),
'yao5': int(data.get('yao5', 0)),
'yao6': int(data.get('yao6', 0)),
'value_2binary': int(data.get('value_2binary', 0)),
'change_omit': int(data.get('change_omit', 0)),
'type': str(data.get('Type', 'unknown'))
}
# 构建结果字典,确保所有值是 Python 原生类型
# result = {
@ -210,29 +286,53 @@ if __name__ == "__main__":
# 'type': str(day_data.get('Type', 'day')) # 如果没有值,使用默认值 'day'
# }
# }
# 构建完整结果
# 构建完整结果
build_start = time.time()
result = {
'date': kDate.strftime('%Y-%m-%d'),
'year_gua': format_gua_data(Gua1Year),
'month_gua': format_gua_data(Gua1Month),
'day_gua': format_gua_data(Gua1Day),
'hour_gua': format_gua_data(Gua1Hour),
'luck_gua': format_gua_data(GuaLuck),
'year_gua': {
**format_gua_data(Gua1Year),
**get_piwen_info(format_gua_data(Gua1Year).get('trigram', ''))
},
'month_gua': {
**format_gua_data(Gua1Month),
**get_piwen_info(format_gua_data(Gua1Month).get('trigram', ''))
},
'day_gua': {
**format_gua_data(Gua1Day),
**get_piwen_info(format_gua_data(Gua1Day).get('trigram', ''))
},
'hour_gua': {
**format_gua_data(Gua1Hour),
**get_piwen_info(format_gua_data(Gua1Hour).get('trigram', ''))
},
'luck_gua': {
**format_gua_data(GuaLuck),
**get_piwen_info(format_gua_data(GuaLuck).get('trigram', ''))
},
'luck_years': [
{
'year': row['Year'],
'trigram': row['trigram'],
'yaoAll': row['yaoAll']
'yaoAll': row['yaoAll'],
**get_piwen_info(row['trigram'])
} for _, row in LuckYear.iterrows()
] if isinstance(LuckYear, pd.DataFrame) else []
}
logger.info(f"结果构建完成,耗时: {time.time() - build_start:.2f}")
# 在打印 JSON 前检查内容
print("=== 要输出的 JSON 内容 ===", file=sys.stderr)
print(result, file=sys.stderr)
# 输出 JSON 格式的结果
# print(json.dumps(result, ensure_ascii=False, indent=4)) # 添加 indent 参数更好查看格式
# 输出结果
output_start = time.time()
print(json.dumps(result, ensure_ascii=False, indent=2))
logger.info(f"结果输出完成,耗时: {time.time() - output_start:.2f}")
total_time = time.time() - total_start
logger.info(f"=== API 执行完成,总耗时: {total_time:.2f}秒 ===")
except Exception as e:
import traceback
traceback.print_exc(file=sys.stderr) # 打印错误堆栈,帮助调试

View File

@ -4,60 +4,118 @@ import sys
from datetime import datetime
import os
import json
# 在server.py顶部添加
import pandas as pd
import logging
from logging.handlers import RotatingFileHandler
import time
app = Flask(__name__)
# 在Flask应用初始化后添加
@app.before_first_request
def load_batch_data():
# 读取批文Excel文件
batch_path = r'C:\Users\24011\Documents\WeChat Files\wxid_k4ep58f81rx421\FileStorage\File\2025-04\tuigua_huangjijingshi - 副本\tuigua_huangjijingshi - 副本\python1\批文.xlsx'
app.batch_data = pd.read_excel(batch_path)
# 在 Flask 应用初始化后添加日志配置
def setup_logging():
# 创建日志目录(如果不存在)
log_dir = os.path.join(os.path.dirname(__file__), 'logs')
os.makedirs(log_dir, exist_ok=True)
# 配置根日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
RotatingFileHandler(
os.path.join(log_dir, 'app.log'),
maxBytes=1024*1024*5, # 5MB
backupCount=5
),
logging.StreamHandler()
]
)
# 在应用初始化后调用
setup_logging()
logger = logging.getLogger(__name__)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/calculate', methods=['POST'])
def calculate():
start_time = time.time()
logger.info("开始处理计算请求")
date_str = request.form.get('date')
time_str = request.form.get('time', '00:00:00') # 默认为00:00:00
time_str = request.form.get('time', '00:00:00')
try:
# 验证日期和时间格式
datetime.strptime(date_str, '%Y-%m-%d') # 先单独验证日期
datetime.strptime(time_str, '%H:%M:%S') # 再验证时间
# 组合日期和时间
datetime.strptime(date_str, '%Y-%m-%d')
datetime.strptime(time_str, '%H:%M:%S')
datetime_str = f"{date_str} {time_str}"
api_path = os.path.join(os.path.dirname(__file__), 'API.py')
logger.info(f"准备调用API.py参数: {datetime_str}")
api_start = time.time()
result = subprocess.run(
[sys.executable, api_path, datetime_str],
capture_output=True,
text=True, # 确保输出是文本
text=True,
check=True
)
api_time = time.time() - api_start
logger.info(f"API.py执行完成耗时: {api_time:.2f}")
# 打印完整输出用于调试
print("=== API.py 原始输出 ===")
print("stdout:", result.stdout)
print("stderr:", result.stderr)
logger.debug("=== API.py 原始输出 ===")
logger.debug(f"stdout: {result.stdout[:200]}...") # 只记录前200字符
logger.debug(f"stderr: {result.stderr[:200]}...")
try:
json_start = time.time()
json_output = json.loads(result.stdout)
json_time = time.time() - json_start
logger.info(f"JSON解析完成耗时: {json_time:.2f}")
total_time = time.time() - start_time
logger.info(f"请求处理完成,总耗时: {total_time:.2f}")
return jsonify({'success': True, 'result': json_output})
except json.JSONDecodeError as e:
print("JSON 解析失败:", e)
print("原始输出:", result.stdout)
error_msg = f'JSON解析失败: {str(e)}'
logger.error(error_msg)
logger.error(f"原始输出: {result.stdout[:500]}")
return jsonify({
'success': False,
'error': f'JSON解析失败: {str(e)}',
'raw_output': result.stdout # 返回原始输出用于调试
'error': error_msg,
'raw_output': result.stdout[:500]
})
except ValueError:
return jsonify({'success': False, 'error': '无效的日期格式'})
except ValueError as e:
error_msg = f'无效的日期格式: {str(e)}'
logger.error(error_msg)
return jsonify({'success': False, 'error': error_msg})
except subprocess.CalledProcessError as e:
error_msg = f'计算失败: {e.stderr}'
logger.error(error_msg)
logger.error(f"stdout: {e.stdout[:500]}")
return jsonify({
'success': False,
'error': f'计算失败: {e.stderr}',
'stdout': e.stdout
'error': error_msg,
'stdout': e.stdout[:500]
})
except Exception as e:
return jsonify({'success': False, 'error': str(e)})
error_msg = f'服务器错误: {str(e)}'
logger.error(error_msg, exc_info=True)
return jsonify({'success': False, 'error': error_msg})
if __name__ == '__main__':
app.run(debug=True,host='0.0.0.0',port=5000)